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Inclusive cross section and the response function

@ xsection completely determined by response function
. 2
R(g.w) = Y| (/10@I0)| 4 (w — By + Fo)
!

@ excitation operator O(q) specifies the vertex

Same structure not only in NP but also condensed matter, cold atoms,. .. )

Roggero & Carlson Linear response on a QC INT - 15 Feb, 2018 1/3



Inclusive cross section and the response function

@ xsection completely determined by response function
. 2
R(g.w) = Y| (/10@I0)| 4 (w — By + Fo)
!

@ excitation operator O(q) specifies the vertex

Same structure not only in NP but also condensed matter, cold atoms,. .. )

Extremely challenging classically for strongly correlated quantum systems

@ limited to small systems

@ reliant on approximations that are difficult to control (efficiently)
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Response functions on a Quantum Computer

@ use time correlation functions  (Terhal&DiVincenzo(2000), Ortiz et al. (2001))

Ingredients for response calculation in frequency space

@ an oracle that prepares the ground state (QAA, VQE, Spectral Combing, ... )
@ an oracle for time evolution (Berry et al. (2015),Hao Low et al. (2016))
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Response functions on a Quantum Computer

@ use time correlation functions  (Terhal&DiVincenzo(2000), Ortiz et al. (2001))

Ingredients for response calculation in frequency space

@ an oracle that prepares the ground state (QAA, VQE, Spectral Combing, ... )
@ an oracle for time evolution (Berry et al. (2015),Hao Low et al. (2016))
e an oracle that prepares |E) = O(g)|0) (Roggero & Carlson (in prep.))

By performing quantum phase estimation (Kitaev(1996), Abrams&Lloyd(1999))
with M ancilla qubits we will measure frequency v with probability:

P(v) =Y [{f|IE)] éum (v — Ef + Ep)
f

o finite width approximation of R(q,w)
@ need only M ~ log, (1/Aw) ancillae

@ evolution time ¢ ~ Poly(sys.size)/Aw
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Response functions on a Quantum Computer

@ use time correlation functions  (Terhal&DiVincenzo(2000), Ortiz et al. (2001))

Ingredients for response calculation in frequency space
@ an oracle that prepares the ground state (QAA, VQE, Spectral Combing, ... )
@ an oracle for time evolution (Berry et al. (2015),Hao Low et al. (2016))
e an oracle that prepares |E) = O(g)|0) (Roggero & Carlson (in prep.))

By performing quantum phase estimation (Kitaev(1996), Abrams&Lloyd(1999))
with M ancilla qubits we will measure frequency v with probability:

P(I/) — Z ’<f|E>’2 S (V . Ef + EO) Roggero & Carlson (in prep.)
f

o finite width approximation of R(q,w)

maximum error

@ need only M ~ log, (1/Aw) ancillae

@ evolution time ¢ ~ Poly(sys.size)/Aw

Number of iterations
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Exclusive response for neutrino oscillation experiments

Goals for v oscillation exp.

@ neutrino masses

@ accurate mixing angles

e CP violating phase

2
P(vg = va) = 1 — sin?(20)sin® (Am L>

4F,

@ need to use measured reaction products to constrain E, of the event

Roggero & Carlson Linear response on a QC INT - 15 Feb, 2018 3/3



Exclusive response for neutrino oscillation experiments

Goals for v oscillation exp.

@ neutrino masses

@ accurate mixing angles

e CP violating phase

2
P(vg = va) = 1 — sin?(20)sin® (Am L)

4F,

@ need to use measured reaction products to constrain E, of the event

o after measuring energy w with QPE, state-register is left in

lout)y, ~ Y (fIO@0)|f)  with Bf — By = w + Aw
f
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Exclusive response for neutrino oscillation experiments

Goals for v oscillation exp.

@ neutrino masses
@ accurate mixing angles

e CP violating phase

2
P(vq — o) = 1 — sin?(26)sin? (Am L>

4F,

@ need to use measured reaction products to constrain E, of the event

o after measuring energy w with QPE, state-register is left in

lout)y, ~ Y (fIO@0)|f)  with Bf — By = w + Aw
f

STAY TUNED more details coming out soon: Roggero & Carlson (in prep.)
INT - 15 Feb, 2018 3/ 3



Response functions on classical computers
Bacca et al. (2013) LIT+CC
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Quantum Phase Estimation
Kitaev (1996), Brassard et al. (2002), Svore et. al (2013), Weibe & Granade (2016)

QPE is a general algorithm to estimate eigenvalues of a unitary operator
g g g y
Uler) = Mlér) s A = 2% = U = %H

Ovrumé&Hjorth-Jensen (2007)

e starting vector ) = >, ck|ék)
@ store time evolution [ (1)) in
auxiliary register of m qubits

e perform (Quantum) Fourier e
transform on the auxiliary register

@ measures will return Ay with R
probability P(\1) ~ |ci|?
to get |GS) a good |¢)) is criticalJ
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Test on classical computer

2N bound state on 322 lattice

100 10" 10° 10%3
# of iterations :
i

rescaled energsz 0]

Roggero & Carlson Linear response on a QC INT - 15 Feb, 2018 3/3

R(w)

A

I




Final state properties from a Quantum Computer
@ after measuting energy v with QPE, state-register is left in
lout), ~ Y (flO()|0)|f)  with By — By = v+ Aw

f
@ we can then measure eg. 1- and 2-particle momentum distributions
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